Name: \qquad Date: \qquad

Notes: Molarity and Dilutions

What about water never changes? \qquad
What does it mean that oxygen is more electronegative than hydrogen? \qquad

What does this difference in electronegativity cause? \qquad
Why can water dissolve both ionic and polar covalent compounds so well?

What happens to a substance when it dissolves? \qquad

Define concentration: \qquad

How is concentration measured?

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { liter of solution }} \quad M=\frac{\mathrm{mol}}{\mathrm{~L}}
$$

What does [NaCl] mean? \qquad
How would you read "1.5 M solution"?

Calculating Molarity

Step 1: Determine the \# of moles. (If given grams, divide by formula mass to get moles.)
Step 2: Determine the \# of liters of solution. (If given mL , divide by $1000 \mathrm{ml} / \mathrm{L}$ to get liters.)
Step 3: Divide moles of solute by liters of solution.
How do you make a solution more concentrated? \qquad
How would you dilute a solution? \qquad
What would this mean adding in an aqueous solution? \qquad

$$
\binom{\text { Volume of }}{\text { solution } 1}\binom{\text { molarity of }}{\text { solution }}=\binom{\text { volume of }}{\text { solution } 2}\binom{\text { molarity of }}{\text { solution 2 }} \quad V_{1} M_{1}=V_{2} M_{2}
$$

Calculating Dilutions

Step 1: Place the volume and molarity measurements that belong together on one side.
Step 2: Place the measurement that is by itself next to your unknown.
Step 3: Divide to solve for your unknown.
Important Fact: The unit of volume you start with is the one you will end with!

1. What is the molarity of a solution if 2.50 moles of NaCl are dissolved in 5.00 liters of solution?

Were you given moles?
\square Yes $\quad \square$ No \rightarrow divide by formula mass
Were you given liters?
\square Yes $\quad \square$ No \rightarrow divide by $1000 \mathrm{~mL} / \mathrm{L}$
2. What is the molarity of a solution if 75.0 grams of LiBr are dissolved in 1.20 L of water?

```
Were you given moles?
\squareYes \squareNo }->\mathrm{ divide by formula mass
Were you given liters?
\squareYes }\quad\mathrm{ No }->\mathrm{ divide by }1000\textrm{mL}/\textrm{L
```

3. What is the molarity of a solution if 5.00 mol of HNO_{3} are dissolved in .500 liter of solution?

Were you given moles?
\square Yes $\quad \square$ No \rightarrow divide by formula mass
Were you given liters?
\square Yes $\quad \square$ No \rightarrow divide by $1000 \mathrm{~mL} / \mathrm{L}$
4. What is the molarity of a solution made by dissolving 12.5 g of NaCl in enough water to make 125 mL of solution?

Were you given moles? \square Yes $\quad \square$ No \rightarrow divide by formula mass

Were you given liters?
\square Yes $\quad \square$ No \rightarrow divide by $1000 \mathrm{~mL} / \mathrm{L}$
5. A student wants to make 100 . mL of $0.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ by diluting a $12.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. How much of that solution should be used?
6. A teacher starts with 2.0 L of a $0.25 \mathrm{M} \mathrm{CaCl}_{2}$ solution and dilutes it to 3.0 L . What is the concentration of CaCl_{2} in the new solution?
7. How many milliliters of 5.0 M HCl solution would be required to make 125 mL of 0.40 M HCl solution?

