http://martinezchem.weebly.com

Name:	Date:
Notes: Nuclear Chemistry	
alpha particle $(\alpha) = \frac{4}{2}$	He beta particle (β) = $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$ e neutron = $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ n
How many protons are in an alp	oha particle?
How many <i>neutrons</i> are in an a	lpha particle?
What is the <i>charge</i> of an alpha	particle?
How do alpha particles compar	e to other forms of radiation in terms of their mass?
Are α particles the <i>most</i> or <i>leas</i>	t penetrative radiation?
Are α particles the <i>most</i> or <i>leas</i>	t ionizing radiation?
Why are alpha particles such a l	highly ionizing form of radiation?
β particles have the same prope	erties of what other particles?
What is the charge of a beta pa	rticle?
What changes in the nucleus w	hen a β particles is emitted?
Do beta particles have any mas	s at all?
What do we round the mass of	β particles to because they are so small?
What can be used to stop beta	radiation?
Why are beta particles consider	red a slightly ionizing form of radiation?
What are gamma rays?	
What is the charge of gamma ra	adiation?
What is the <i>actual</i> mass of gam	ma radiation?
What must be used to stop gam	nma radiation?
	ed a <i>non-ionizing</i> form of radiation?

http://martinezchem.weebly.com

What is true of both fission and fusion?
How does the <i>amount</i> of mass relate to <i>amount</i> of energy created in nuclear reactions?
Define <i>fission</i> :
Are fission reactions easy or difficult to initiate?
How do we use fission reactions?
What is a drawback of fission?
Define <i>fusion</i> :
Why would fusion be such a great energy source for producing electricity?
Why is fusion not used to directly produce electricity?
What type of reaction, fission or fusion, occur inside stars like our sun?
$^{14}C \rightarrow ^{0}_{-1}e + _{}$
Balancing Nuclear Reactions
Step 1:
Step 2:
Step 3: