Name: \qquad Date: \qquad

Notes: Mass Numbers and Atomic Mass

Who performed the experiments that proved the existence of the neutron?

What previously held idea about the atom did this discovery disprove?

Define isotope: \qquad

What are the relative masses of the three subatomic particles:
Protons \qquad Neutrons \qquad Electrons \qquad
Why do electrons not count towards the mass of an atom? \qquad

Define mass number: \qquad

Is mass number the same thing as atomic mass? \qquad
In the space below, write the equation for determining the number of neutrons in an atoms of a certain isotope.

Fill in the blanks with the correct number of neutrons for each isotope?
Carbon-13 has \qquad neutrons

Uranium-239 has \qquad neutrons

Hydrogen-3 has \qquad neutrons Boron-11 has \qquad neutrons

Fluorine-19 has \qquad neutrons

Chlorine-37 has \qquad neutrons

Write the name of the correct isotope for each of the combinations of protons and neutrons below:

80 protons and 121 neutrons = \qquad
20 protons and 20 neutrons = \qquad
30 protons and 35 neutrons = \qquad
2 protons and 3 neutrons = \qquad
18 protons and 22 neutrons = \qquad

Avogadro's Number:

What do we call a group of this many particles? \qquad
Why is the number of neutrons in an element not listed on the periodic table?

What is consistent within a sample of any given element?

Define atomic mass: \qquad
How do you calculate the atomic mass of an element given the percentage of each isotope?

In a mole of chlorine, about 75.0% of the atoms are chlorine- 35 , and about 25.0% of the atoms are chlorine-37. What is the approximate atomic mass of chlorine?

In a mole of boron, about 80.0% of the atoms are boron-11, and about 20.0% of the atoms are boron-10. What is the approximate atomic mass of Boron based on this data?

In a sample of an unknown element, X, the ratio of isotopes is examined. It is determined that 89.80% of the sample is composed of ${ }^{112} \mathrm{X}$, and the other 10.20% is composed of ${ }^{114} \mathrm{X}$. Based on this data, what would be the atomic mass of element X ?

