http://martinezchem.weebly.com | Name: | Date: | |---|--| | Notes: | Heat and the Enthalpy of Reaction | | Define the Law of Conservat | ion of Energy: | | | | | What happens during all read | ctions? | | What types of energy are usi | ually absorbed or released? | | What happened if the energy | y of system <i>decreased</i> ? | | What happened if the energy | y of system increased? | | Define exothermic reaction : | | | Define endothermic reaction | 1: | | | ns require? | | Define activation energy (EA |): | | Define <i>enthalpy</i> : | | | What is the <i>change in entha</i> | Ipy (ΔH) equal to for a chemical reaction? | | What is the enthalov of form | nation (ΔH ^o _f)? | | what is the chinary of John | (Δ//†): | | What is enthalpy of formatio | on also called? | | Enthalpy of $=$ $\begin{pmatrix} enthalpy \\ of products \end{pmatrix}$ $-$ | $-\left(egin{array}{c} ext{enthalpy} \ ext{of reactants} \end{array} ight) \qquad \Delta H = \Delta H_{\mathrm{f}}^{\mathrm{O}}(ext{products}) - \Delta H_{\mathrm{f}}^{\mathrm{O}}(ext{reactants})$ | | Where are the <i>products</i> four | nd in a chemical equation? | | Where are the <i>reactants</i> fou | nd in a chemical equation? | | Important Facts: What do you have to do sinc | e all $\Delta H_{\mathrm{f}}^{\mathrm{O}}$ values are given in kilojoules per mole (kJ/mol)? | | What should you pay special | attention to? | | What is the heat of formatio | n ($\Delta H_{\mathrm{f}}^{\circ}$) of <i>ALL</i> elements? | | What are the 7 diatomic eler | ments? | http://martinezchem.weebly.com Exothermic: _____ | C ₂ H _{6 (g)} | ΔH _f = -83.85 kJ/mol | |-----------------------------------|-----------------------------------| | C ₃ H _{8 (I)} | ΔH _f = -104.7 kJ/mol | | H ₂ O _(I) | ΔH _f = -285.830 kJ/mol | | H ₂ O _(g) | ΔH _f = -241.818 kJ/mol | | CO _{2 (g)} | ΔH _f = -393.509 kJ/mol | | Products = | | |--|----------------| | Products = | | | | | | Reactants = | | | Reactants = | | | ΔH = Products – Reactants | | | ΔΗ = | | | ΔΗ = | Final
Answe | | $C_3H_{8(l)} + 5O_{2(g)} \rightarrow 4H_2O_{(g)} + 3CO_{2(g)}$ | | | Products = | | | Products = | | | Reactants = | | | Reactants = | | | ΔΗ = | | | ΔH = | Final | | | | | $2H_2O_{(I)} \rightarrow 2H_{2(g)} + O_{2(g)}$ | | | Products = | | | Products = | | | Reactants = | | | Reactants = | | | ΔΗ = | | | | Final | | ΔΗ = | Answe | | How can you tell if a reaction is exothermic or endothermic based on the ΔH value? | | Endothermic: ___