Name: \qquad Date: \qquad

Notes: The Gas Law Equations

Kinetic-Molecular Theory

1.
2. \qquad
3.
4.

What are the 2 units for measuring temperature? \qquad
Define absolute zero: \qquad

Converting between Temperature Scales:

What units MUST be used in the gas laws? \qquad
Convert between the temperature scales below.

Which law describes how the pressures of gases in a container add together?

1. What is the pressure inside a container if it contains Ne gas at a pressure of $350 . \mathrm{kPa}, \mathrm{CO}_{2}$ gas at a pressure of 175 kPa and N_{2} gas at a pressure of 200. kPa ? \qquad
2. $\mathrm{CO}_{2}, \mathrm{~N}_{2}$ and He gas are inside of a container. The total pressure exerted by the gases is 10.0 atmospheres. The CO_{2} exerts a pressure of 2.2 atm and the N_{2} exerts a pressure of 4.6 atm . How much pressure is exerted by the helium gas? \qquad
Who discovered the relationship between pressure and volume? \qquad
How are pressure and volume related?
Who discovered the relationship between volume and temperature? \qquad
How are volume and temperature related?
Who discovered the relationship between volume and number of moles? \qquad
How are volume and number of moles related?
How do you change the Combined Gas Law into one of the simpler gas laws?
3. A container is filled with helium gas. It has a volume of 2 liters and is at a temperature of $20^{\circ} \mathrm{C}$. If the temperature of the container is increased to $35^{\circ} \mathrm{C}$ without removing any of the gas or changing the pressure, what will the new volume be?
Equation: Substitution: Solution:
4. A container is filled with nitrogen gas. It has a volume of 1.0 liter and contains 0.25 mol of N_{2}. If the number of moles in the container were increased to 1.5 mol without changing the temperature or pressure, what will the new volume be?
Equation:
Substitution:
Solution:
5. A container is filled with neon gas. It has a volume of 2.5 L and a pressure of 202.6 kPa . If the volume of the container is increased to 6 L without removing any of the gas or changing the temperature, what will the new pressure be?
Equation: Substitution: Solution:
6. A container is filled with argon gas. It contain 20.0 mol of argon and is at a temperature of $22.0^{\circ} \mathrm{C}$. If the number of moles of argon in the container is halved without changing the pressure or volume, what will the new temperature be?
Equation:
Substitution:
Solution:
7. A container is filled with nitrogen gas. It has a volume of 15 liters and contains 1.5 moles of N_{2}. If the amount of nitrogen in the container were doubled without changing the temperature or pressure, what will the new volume be?
Equation: Substitution: Solution:
8. A container is filled with hydrogen gas. It has a volume of 2.0 liters and a pressure of 3.0 atm . If the pressure of the container is increased to 5.0 atm without removing any of the gas or changing the temperature, what will the new volume be?
Equation:
Substitution:
Solution:
9. A container is filled with helium gas. It has a volume of 8 liters and is at a temperature of
$20^{\circ} \mathrm{C}$. If the temperature of the container is increased to $60^{\circ} \mathrm{C}$ without removing any of the gas or changing the pressure, what will the new volume be?
Equation: Substitution:
Solution:
http://martinezchem.weebly.com
