Name: \qquad Date: \qquad

Notes: The Combined Gas Law

$$
\frac{(\text { Initial pressure)(initial volume) }}{(\text { Initial moles)(initial temperature) }}=\frac{(\text { final pressure)(final volume) }}{(\text { final moles)(final temperature) }} \quad \frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}
$$

Today you conducted labs to understand how the variables used to describe gases are related. There is also an equation that is used to describe how changing any of the variables affects the others. Use the results of your experiments and the equation above to answer the following questions.

How are volume and the number of moles of a gas related?

Are \mathbf{V} and \mathbf{n} on the same side or opposite sides of the equation?
How are pressure and the number of moles of a gas related?

Are \mathbf{P} and \mathbf{n} on the same side or opposite sides of the equation? \qquad
How are pressure and the volume of a gas related?

Are \mathbf{P} and \mathbf{V} on the same side or opposite sides of the equation?
How are pressure and the temperature of a gas related?

Are \mathbf{P} and \mathbf{T} on the same side or opposite sides of the equation? \qquad
What can you conclude about how variables relative position in the Combined Gas Law equation predicts how they are related?

What does the left side of the Combined Gas Law describe?

What does the right side of the Combined Gas Law describe?

http://martinezchem.weebly.com

Define directly proportional: \qquad
Define inversely proportional: \qquad
When are variables inversely proportional? \qquad
When are variables directly proportional? \qquad
If you are interested in how 2 variables are related, how can you derive the equation from the combined gas law? \qquad

Write the equation for each of the following sets of variables:

pressure and number of moles: \qquad
pressure and temperature:
temperature and number of moles: \qquad
Example: The pressure of a container is $100 . \mathrm{kPa}$ at a temperature of 300 . K. At what temperature would the pressure be 150 . kPa if the volume and number of moles of gas are held constant?
Equation:
Substitution:
Solution:
$\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$
What are the 2 units for measuring temperature? \qquad
Define kinetic energy: \qquad
Define absolute zero: \qquad

$$
0^{\circ} \mathrm{C}=273 \mathrm{~K}
$$

How do you convert between ${ }^{\circ}$ Celsius and Kelvin? \qquad
How do you convert between Kelvin and ${ }^{\circ}$ Celsius? \qquad
What units MUST be used for the gas laws? \qquad
Convert between the temperature scales below.
$100^{\circ} \mathrm{C}=$ \qquad K
$400 \mathrm{~K}=$ \qquad ${ }^{\circ} \mathrm{C}$
$20^{\circ} \mathrm{C}=$ \qquad K
$350 \mathrm{~K}=\ldots{ }^{\circ} \mathrm{C}$
$-15^{\circ} \mathrm{C}=$ \qquad K
$273 \mathrm{~K}=$ \qquad ${ }^{\circ} \mathrm{C}$

Why is the Combined Gas Law such an important equation?

